University of Florida/Eml4507/s13.team4ever.Wulterkens.R3

From testwiki
Jump to navigation Jump to search

Template:Big3

Given Equations

Given the two following equations, verify that they simplify to the bar element stiffness matrix k¯(e).


𝟏) k¯(e)=T(e)Tk^(e)T(e)

𝟐) k¯(e)=T~(e)Tk~(e)T~(e)


Solution 1

Original Equation

k¯(e)=T(e)Tk^(e)T(e)

Given Equations

k^(e)=k(e)[1111]=[k(e)k(e)k(e)k(e)]

T(e)=[l(e)m(e)0000l(e)m(e)]

Plugging into original Equation

k¯(e)=[l(e)0m(e)00l(e)0m(e)][k(e)k(e)k(e)k(e)][l(e)m(e)0000l(e)m(e)]

Solving

Multiple the first two equations. k¯(e)=[l(e)k(e)l(e)k(e)m(e)k(e)m(e)k(e)l(e)k(e)l(e)k(e)m(e)k(e)m(e)k(e)][l(e)m(e)0000l(e)m(e)]

Pull out the K term. k¯(e)=k(e)[l(e)l(e)m(e)m(e)l(e)l(e)m(e)m(e)][l(e)m(e)0000l(e)m(e)]

Multiple the last two matrices to get the following equation: k¯(e)=k(e)[l(e)2l(e)m(e)l(e)2l(e)m(e)l(e)m(e)m(e)2l(e)m(e)m(e)2l(e)2l(e)m(e)l(e)2l(e)m(e)l(e)m(e)m(e)2l(e)m(e)m(e)2]


This shows that the original equation can be simplified down to the bar element stiffness matrix.

Solution 2

Original Equation

k(e)=T~(e)Tk~(e)T~(e)

Provided equations

T~(e)=[cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)0000cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)]

k~(e)=EAL[1010000010100000]


Plugging into Original Equation

k(e)=[cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)0000cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)]EAL[1010000010100000][cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)0000cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)]

Solving

Begin by multiplying the first two matrices together. k(e)=EAL[cos(ϕ)0cos(ϕ)0sin(ϕ)0sin(ϕ)0cos(ϕ)0cos(ϕ)0sin(ϕ)0sin(ϕ)0][cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)0000cos(ϕ)sin(ϕ)00sin(ϕ)cos(ϕ)]

Next, multiply the last two together. k(e)=EAL[cos(ϕ)2cos(ϕ)sin(ϕ)cos(ϕ)2cos(ϕ)sin(ϕ)cos(ϕ)sin(ϕ)sin(ϕ)2cos(ϕ)sin(ϕ)sin(ϕ)2cos(ϕ)2cos(ϕ)sin(ϕ)cos(ϕ)2cos(ϕ)sin(ϕ)cos(ϕ)sin(ϕ)sin(ϕ)2cos(ϕ)sin(ϕ)sin(ϕ)2]

This verifies our original expectation that the equation would simplify down to the bar element stiffness matrix.

Template:CourseCat